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 2. Nuclear Models 

2.1 Liquid Drop Model of Nucleus (Semi-Empirical mass formula or Weizsacker 

formula)  

(A simple explanation for the binding-energy curve) 

Using semi-empirical approach (based on experimental results) Weizsacker showed that 

it is possible to achieve a quantitative and more basic understanding of binding energies 

of nuclei. 

Assumptions 

(i) Nucleus is modeled on a drop of liquid. 

(ii) The nuclear interaction between protons and neutrons, between protons and protons, 

and between neutron and neutrons are identical 

(iii) N = Z = A/2.  

(iv) Nuclear forces are saturated. 

Deduction 

(i) Volume Energy term  vB  

In a liquid drop, in which each molecule interacts only with its neighbors and number of 

neighboring molecules is independent of overall size of the liquid drop, the binding 

energy of liquid drop is   ALMB m  where L=latent heat of liquid, mM =mass of each 

molecule, A=number of molecules. 

In analogy to the liquid drop, for nuclei we expect a volume term in the expression for 

binding energy.   

Volume energy term,    v vB a A               

where va : Volume coefficient (=14.1MeV) and A: Mass number 

 

http://www.physicsbyfiziks.com
mailto:fiziks.physics@gmail.com


fiziks 
Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics 

 

H.No. 40-D, Ground Floor, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016 
Phone: 011-26865455/+91-9871145498 

Website: www.physicsbyfiziks.com  | Email: fiziks.physics@gmail.com  
2 

 

(ii) Surface Energy Term  sB  

At the surface of the nucleus, there are nucleons which are not surrounded from all sides; 

consequently these surface nucleons are not bound as tightly as the nucleons in the 

interior and hence its binding energy is less. The larger the nucleus, the smaller the 

proportion of nucleons at the surface 

Surface area of the nucleus=
22 2 3

o4 R 4 R A   . 

Hence number of nucleons with fewer than maximum 

number of neighbor is proportional to 2/3A . So reducing the 

binding energy by introducing the term  

                                             2/3
s sB a A    

where sa : Surface energy coefficient (=13.0MeV). 

It is most significant for lighter nuclei since a greater fraction of their nucleons are on the 

surface. Because natural systems always tend to evolve toward configurations of 

minimum potential energy, nuclei tend toward configurations of maximum binding 

energy. Hence a nucleus should exhibit the same surface-tension effects as a liquid drop, 

and in the absence of other effects it should be spherical, since a sphere has the least 

surface area for a given volume.      

(iii) Coulomb Energy term  cB  

The electric repulsion between each pair of proton in a nucleus also contributes towards 

decreasing its binding energy. The potential energy of protons ' 'r  apart is equal to 

                                                      
2

4 o

eV
r

 . 

Since there are 
( 1)

2
Z Z 

 pair of protons, the coulomb energy
( 1)

2c
Z ZB V

 , 
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2

.

( 1) 1
4 2c

avo

e Z ZB
r

    
 

 

Now, 
.

1

avr
 
 
   is average value of

1
r

 
 
 

, averaged over all proton pairs. If the protons are 

uniformly distributed 2
3.

1 1 1

avr R A
    
   , thus  1/3

( 1)
c c

Z ZB a
A


   

where ca : Coulomb energy coefficient(=.595 MeV) 

The coulomb energy is negative because it arises from an effect that opposes nuclear 

stability. So, the total Binding energy is   2/3
1/3

( 1)
v s c v s c

Z ZB B B B a A a A a
A


                              

(iv) Corrections to the Formula 

The above binding energy formula can be improved by taking into account two effects 

that do not fit into the simple liquid drop model but which make sense in terms of a 

model that provides for nuclear energy levels. The above result was improved by 

including two effects  

(a) Asymmetry Effect                                     (b) Pairing Effect 

 

(a)Asymmetry Effect  aB  

Asymmetry Energy Term, Ba 

depends on the neutron 

excess  N Z and decreases the 

nuclear binding energy. So far, we 

have neglected the quantization of 

energy states of individual nucleons in the nucleus and the application of the Pauli 

Exclusion Principle.  

Neutron
otonPr

Z-protons occupying  
deepest levels 

(N-Z) excess 
neutrons 
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If we put Z protons and N neutrons into the nuclear energy shells, the lowest Z energy 

levels are filled first. By Pauli Exclusion Principle, the excess  N Z neutrons must go 

into previously unoccupied quantum states since the first Z quantum states are already 

filled up with protons and neutrons. 

These  N Z excess neutrons are occupying higher energy quantum states and are 

consequently less tightly bound than the first 2Z nucleons which occupy the deepest lying 

energy levels. Thus neutron asymmetry gives rise to a disruptive term in nuclear binding 

energy. Excess energy per nucleon 
N Z

A


  

Since the total number of excess neutrons is  N Z , the total deficit in nuclear binding 

energy is proportional to product of these 

                                   
2 2

a a a
(N Z) (A 2Z)B a a

A A
 

     ,       

  where aa : asymmetric energy coefficient(19.0 MeV). 

 

(b) Pairing Effect 

Since all the previous terms have involved a smooth variation of B whenever Z or N 

changes and does not account for the kinks which show an evidence for favored pairing. 

In liquid drop model we have omitted the intrinsic spin of the nucleons and shell effects. 

This is corrected by adding a pairing energy term Bp to the nuclear binding energy. 

                   p
p 3/ 4

a
B ,0

A  ,  
0 for odd-even or even-odd      
-ve for odd-odd
+ve for even-even

pa

 



 and pa =33.5 MeV 
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The final expression for binding energy is   

                        
2

p2/3
v s c a1/3 3/4

aZ(Z 1) (A 2Z)B a A a A a a ,0
A A A
 

      

Now, nuclear mass can be written as  

 2N N P
BM(Z, A) AM Z(M M ) c                   (M & B in mass units) 

   
2

2/3 3/4
N N P v s c a p1/3 2

A 2Z)Z(Z 1) 1M(Z,A) AM Z(M M ) a A a A a a ,0 a A
A A c


          
  

  

2.1.1 Most stable nuclei among members of Isobaric family 

For a given A, we have to find the value of Z for which the binding energy B is a 

maximum, which corresponds to maximum stability, we must show
0

0
Z Z

dB
dZ 

   
 

                                           

 Since 
2

p2/3
v s c a1/3 3/4

aZ(Z 1) (A 2Z)B a A a A a a ( ,0)
A A A
 

      

 
0

c a
0 01/3

Z Z

a adB 2Z 1 2(A 2Z )( 2) 0
dZ A A

         
 

 

   c a
0 01/3

a 4a2Z 1 A 2Z 0
A A

      c a c
0 a1/3 1/3

a 4a a2Z 4a
A A A

       
 

 

c
a 1/3

0
c a
1/3

a4a
AZ

a 4a2
A A

  
  
  
 

1/3
a c

0 1/3 1
c a

4a a A
Z

2a A 8a A



 


 


 

Example: For A = 25 we get  
1/3

0 1/3 1

4 19 4 0.595(25)Z
2 (0.595) (25) 8 19 25



 

  


    
76.81 12
6.48

    

should be the atomic number of the most stable isobar of A = 25. This nuclide is 25
12 Mg , 

which is in fact the only stable A = 25 isobar. The other isobars 25
11 Na  and 25

13 Al , are both 

radioactive. 
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Example: The atomic mass of the zinc isotope 64
30 Zn is 63.9294. Compare its binding 

energy with the prediction of the liquid drop model. 

Solution: B.E. = [30 × 1.007825 + 34 × 1.008665 – 63.929] × 931.49 = 559.1 MeV 

From semi-empirical B.E. formula  Z 30, N 34,A 64    

  
2

p2/3
v c c a1 3/4

3

aZ(Z 1) (A 2Z)B a A a A a a
A AA

 
      = 561.7 MeV 

Thus percentage difference = 0.5%. 

2.1.2 Mass Parabola’s  

From the semi-empirical mass equation we have 

     
2

2/3 3/4
N N P v s c a p1/3

Z(Z 1) (A 2Z)M Z,A AM Z M M a A a A a a ,0 a A
A A

 
       

    2s c c a
N v a P N a p1/3 1/3 1/3

a a a 4a
M Z, A A M a a Z M M 4a Z E

A A A A
                            

 or                      

                             2M Z, A A Z Z        

where s
N v a 1/3

aM a a
A

      
 

,   c
a n p 1/ 3

a4a M M
A

       and a c
1/ 3

4a a
A A

    
 

. 

 is pairing energy (Ep) = +  for even Z even N 

                             = 0 for odd Z even N or even N and odd Z 

                             = -  for odd Z odd N 

When A is constant, the equation   2M Z, A A Z Z        represents a parabola. 

Thus the plot of M and Z is parabolic with the “minimum” corresponding to that value of 

Z which gives the (hypothetical) “most stable” isobar in the isobaric family. 
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For Odd A ( = 0) 

As either one of N or Z is even and the other one is odd (since odd + even = odd), so only 

one parabola implying that there is only one stable nucleus. 

Consider the isobaric family for A, 

                 0
A

M 2 Z 0
Z

        ,  

{Z0 = Nuclear charge of “most stable nuclei}, 

        0 0Z  = –2 Z
2


    


. 

So mass of the “most stable” isobar is 

                                       2
0 0 0 0 0M Z , A A 2 Z Z Z  =–2 Z         

                                   2
0 0M Z , A A Z      

Also,                              2
0M Z, A A 2 Z .Z Z       

The difference in masses for odd A is: 

     222
0 0 0 0M Z, A M Z , A 2 Z Z Z Z Z Z            2

0Z Z    

 

 

 

 

 

 

 

 

 0 ,M Z A

 ,M Z A

Z0Z
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Even A isobars ( 0  ) 

Here pairing term   0 since both odd-odd and even-even nuclei are included. So two 

parabolas, 

For odd-odd:               2
0 0M Z , A A Z       

 For even-even:           2
0 0M Z , A A Z        

where 0Z
2


 


 

The vertical separation between two parabolas is 2

  2
0M Z, A A 2 Z Z Z          

2.1.3 -decay stability  

Prediction of stability against -decay for members of an isobaric family               

(For Odd A and Even A isobars) 

 The -decay process furnishes an isobaric pair which can be easily studied with the help 

of semi-empirical mass formula. There are two types of -decay viz. + and –. In the   

–-decay, Z increases by 1-unit and in + -decay Z decreases by 1-unit, while A remains 

constant.  

Energy Released in – -decay      Q M Z, A M Z 1, A ;           Z Z+1
     

Energy released in + -decay      Q M Z,A M Z 1,A ;             Z Z-1
     

 

 

 

 

 

 ,M Z A

Z

2
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(a)Odd A nuclei decay 

Since only one parabola, there is only one minimum value Z0. Therefore we expect that 

for odd-A nuclei there is only one -stable nucleus. 

Only – -decay along the left arm and only +-decay for the right arm of the parabola 

because nuclei are driven towards achieving more stable states. 

Energy released in -decay varies with Z. Hence different transitions in the same 

parabola  may release different amount of energy.  

Now, energy released in decay is given by– -decay, 

           0 0Q M Z,A M Z 1,A M Z,A M Z , A M Z 1, A M Z , A
               

     0 0
2 2

0 0Z – Z Z 1  Z  2 Z 1Q 2 Z Z
2

Z –1

             


 


  

Thus 0
1Q 2 Z Z
2

    
 

     and similarly    0
1Q 2 Z Z
2

   


 


 

(b)Even A nuclei decay 

Here the pairing term 0  and since both odd-odd and even-even nuclei are included, 

we have two parabola, displaced in binding energy by 2   or corresponding mass value.                       

                                                           The decay always terminates on the lower parabola 

because it represents greater stability. (An even-even nucleus makes the lower parabola). 

In each - transformation an even-even nuclei changes to odd-odd nuclei and odd-odd 

nuclei changes to even-even. Hence in each -transformation there will be jump from one 

parabola to the other parabola. 

 

 

 

http://www.physicsbyfiziks.com
mailto:fiziks.physics@gmail.com


fiziks 
Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics 

 

H.No. 40-D, Ground Floor, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016 
Phone: 011-26865455/+91-9871145498 

Website: www.physicsbyfiziks.com  | Email: fiziks.physics@gmail.com  
10 

 

Example: For the family of Isobars with A = 91, estimate (i) nuclear charge of the most 

stable isobar, (ii) the energy released Q 
  and Q 

 for transitions leading to Z0. 

Solution: (i) The atomic number of most stable nucleus is given by  

                                            0Z
2



  

where  
 

c
a N P 1 1

3 3

a 0.5954a M M 4 19 0.8  MeV=-77 MeV
A 91

            

 
a c

1 1
3 3

4a a 4 19 0.595 0.96 MeV
A 91A 91

  
      

 
0

77Z 40.104
2 2 0.96


   
 

 

(ii)  0
1Q 2 Z Z , Z:39 40
2

      
 

;   Z = 39 and  Z0 = 40. 

1Q 2 0.96 40 39
2



      
 

= 0.96 MeV.  

And  0
1Q 2 Z Z , Z: 41 40
2

      
 

; Z = 41 and Z0 = 40. 

1Q 2 0.96 40 40
2



     
 

= 0.96 MeV. 
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Example: (i) For “mirror” nuclei which have N and Z differing by one unit, determine 

the mass difference (Consider A to be odd). 

(ii) The masses of 15
7 N  and 15

8 O  are 15.000108 u and 15.003070 u respectively. Using 

this data, determine the coulomb coefficient ac in the semi-empirical mass formula. 

Solution: Mirror nuclei to be considered have the same odd value of A  but the values of 

N and Z  are interchanged such that they differ by one unit – 1N Z   . 

Now, from semi empirical mass formula we know 

         
2

2/3
N N P v s c a p1/3 3/4

Z Z 1 A 2Z 1M Z,A M A M M Z a A a A a a ,0 a .
A A A
 

         

Now to find mass difference between pair Mirror Nuclei are 

                            Z 1 Z MM Z 1, A – M Z,  M A    

But A – 2Z N Z – 2Z N – Z 1      Let N Z  

       c
Z 1 Z N P 1/3

aM M M M Z 1 Z Z Z 1 Z Z 1
A                   

   c
Z 1 Z P N 1/3

aM M M M A 1
A          

 (ii) For the given nuclei, 

                          3
c 1/3

142.962 10 4 0.000844 a
15

     

                          c
3.542a 0.58 MeV       u=931.5MeV
6.08

    . 
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